Proposed Airborne Toxic Control Measure to Reduce Formaldehyde Emissions from Composite Wood Products

April 26, 2007

Outline

- Background
- Available Technologies
- Proposed Airborne Toxic Control Measure
- Benefits and Impacts
- Comments
- Proposed Modifications
- Recommendation

Background

California's Air Toxics Program

Identification

Potential Toxic Substance

ARB/OEHHA Publishes Draft Report

Public WorkshopsComment Periods

SRP Reviews Report

Public Hearing

Risk Management

Evaluates Source Categories

Investigate Risk Reduction Options •Public Workshops

Publish Staff Report/Proposal • Public Workshops •Comment Period

Public Hearing

Formaldehyde as a Toxic Air Contaminant

- Identified as a Toxic Air Contaminant in 1992
- No level of exposure considered "safe" – Damages DNA
- Inhalation causes cancer in the region of the throat behind the nose
- Non-cancer effects

Carcinogenicity of Formaldehyde

- More evidence since 1992 listing in California
- IARC Group 1 Known Human Carcinogen (2004)
 - Sufficient evidence in humans for nasopharyngeal cancers: "... improbable that all of the positive findings for nasopharyngeal cancer ... could be explained by bias or unrecognized confounding effects"
 - Strong but not sufficient evidence for leukemia in humans
 - Sufficient evidence in animals

Carcinogenicity (Cont'd)

- IARC considered supporting animal studies, including information on mechanism of action
- Studies demonstrate nasal cavity cancers in rats from inhalation
- Co-carcinogen by multiple routes
- Damages DNA in animals and humans

Non-cancer Health Effects

- Occupational exposures induce asthma in workers
 - Sensitized individuals react at low levels
- Workplace exposures associated with significant decrement in lung function, wheezing, shortness of breath; respiratory, eye, nose and throat irritation, rhinitis
- Persistent irritation and cell damage in the nose from long term workplace exposure (basis of OEHHA chronic REL)

Formaldehyde Exposure: Asthma and Lung Function Responses in Children

Some studies suggest:

- Higher risk of asthma in young children exposed to higher formaldehyde levels in home
- Lung function decrements and increased lung inflammation in kids associated with formaldehyde levels in the home, particularly for asthmatic children
- Increased allergic propensity in children in homes with increasing formaldehyde

Animal Models of Asthma

- In animal models of asthma, formaldehyde causes:
 - Bronchoconstriction and hyperactivity of airways
 - Increased airway resistance
 - Enhanced response to allergens

Formaldehyde's Unit Risk

- Formaldehyde Council's petition to revise OEHHA's URF for formaldehyde in 2002
- OEHHA evaluated petition material
- OEHHA's analysis reviewed by the Scientific Review Panel for Toxic Air Contaminants

Petition to Revisit Formaldehyde Assessment Under TAC Process

- Evidence submitted with the petition does not change determination that formaldehyde is a carcinogen:
 - OEHHA's interpretation remains consistent with IARC, USEPA and earlier OEHHA evaluations
 - No new evidence of a threshold provided
 - Concerns about assumptions in CIIT doseresponse model

Scientific Review Panel's Analysis of Petition

- Assumptions strongly affect the inflection point of the "hockey-stick" model
- Allows for large differences in potency estimates at low formaldehyde levels, depending on model inputs
- Additional analysis of assumptions in model is needed
- Recommended petition be denied

Summary

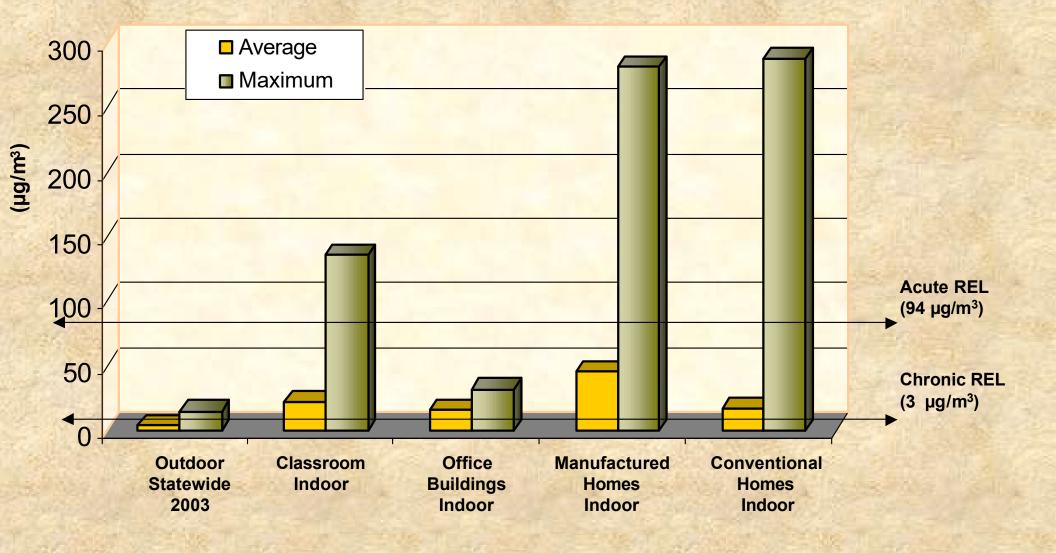
- IARC classification formaldehyde is carcinogenic to humans
- Strong respiratory irritant workers show decrement in lung function, damage to nasal lining
- Occupational asthma
- Possible associations with allergy, lung function, and asthma at environmental exposures
- New data indicates health effects are greater than previously documented

Composite Wood Characteristics

- Wood pieces, particles, fibers, bonded with resin
- Resin may contain formaldehyde
- Unreacted formaldehyde is released

Composite Wood Products

- Hardwood Plywood (HWPW)
- Particleboard (PB)
- Medium Density Fiberboard (MDF)


Formaldehyde Emissions from Composite Wood Products

- Hardwood plywood
 240 tons per year
- Particleboard
 - 450 tons per year
- Medium density fiberboard
 -190 tons per year
- Total of about 900 tons per year

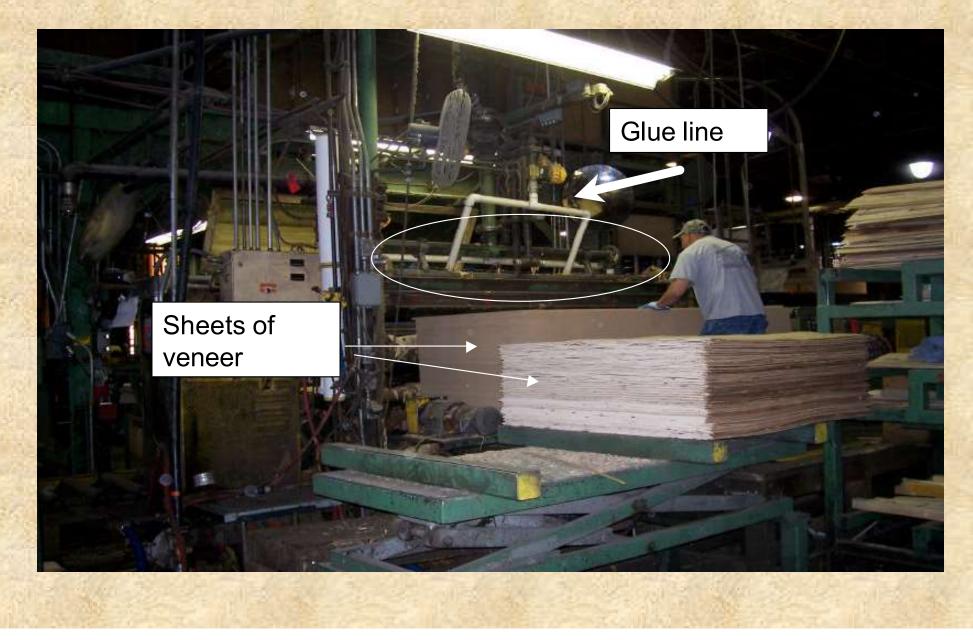
Emission Sources

- Manufacturing plants
- Fabrication facilities
- Home construction
- Transport
- Indoor air moving outside

Typical Formaldehyde Levels

70 years at 1 μ g/m³ = 6 lifetime cancers per million

North American Composite Wood Industry


- HWPW
 - 2002 U.S. production: ~2.5 billion sq. feet
 No. of North American mills: 51
- PB
 - 2002 U.S. production: ~5.4 billion sq. feet
 - No. of North American mills: 40
- MDF

2002 U.S. production: ~2.4 billion sq. feet
No. of North American mills: 26

Hardwood Plywood

Hardwood Plywood Manufacturing Process

Hardwood Plywood

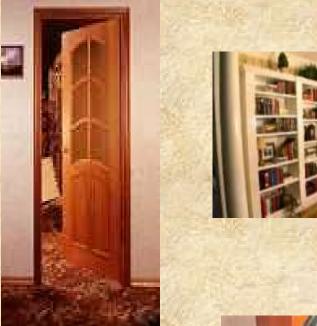
Uses

- •Non-structural paneling
- Cabinets
- •Furniture
- Engineered floors

Particleboard

Particleboard

Particleboard


Uses: Cabinets Countertop core •Floor underlayment Store fixtures Shelving Stair treads

MDF

Uses:

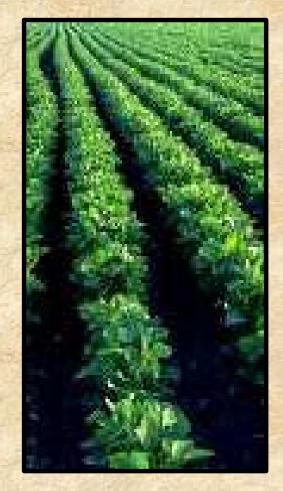
- Cabinets
- Furniture
- Moldings & trim
- Door skins
- Window components
- Shelving
- Engineered floors
- Speaker components

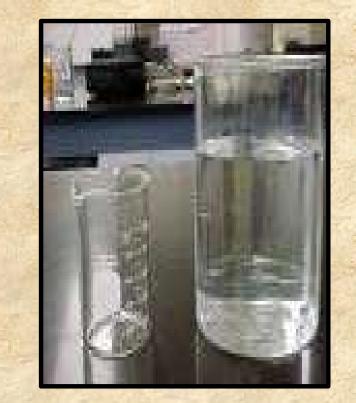
U.S. Emission Standards

United States

- Set in 1985 by U.S. Dept. of Housing and Urban Development (HUD)
- Applies only to PB and HWPW in manufactured homes
- Limits surface emissions
- High emission rate compared to Europe, Australia, and Japan

International Emission Standards


- Lower than current U.S. standard
- Programs are fundamentally different; not directly comparable
- Generally not emission caps


Need for Control

- U.S. HUD standard not protective
- Childhood risk (9 years)*: 23-63 cancer cases per million
- Lifetime risk (70 years)*: 86-231 cancer cases per million

* Based on total daily average formaldehyde exposure

Available Technologies

Resin Options

- Common Resins
 - Urea-formaldehyde (UF)
 - Phenol-formaldehyde (PF)
 - Methylene Diisocyanate (MDI)
 - Polyvinyl Acetate (PVA)
 - Soy
- Emerging Resins
 - MDI Hybrids, Tannin-based, other soy blends
 - Modified UF resins scavengers and blends

Best Available Control Technology Considerations

- Lowest level achievable
- In use and lab-tested alternative resins
- International standards
- Resin technology cost

Proposed Airborne Toxic Control Measure

ATCM Applicability

- Panel manufacturers
- Distributors
- Importers
- Fabricators
- Retailers
- Finished goods

ATCM Provisions

- Applies to products sold, supplied, used, or manufactured for sale in California
- Proposed standards in two phases
- Sell-through
- Exemptions
- Enforcement

Rationale for Phase 1 Standard

- Set an industry cap; over 50% of CWP mfrs. need to lower emissions
- Curtail low-cost, high-emitting imported products

Proposed Phase 1 Standards

Product	Jan 1, 2009	Jul 1, 2009
HWPW-VC	0.08 ppm	
HWPW-CC		0.08 ppm
PB	0.18 ppm	
MDF	0.21 ppm	
Thin MDF	0.21 ppm	

Resin Technologies for Phase 1 in 2009

HWPW, PB and MDF:

UF + 4% MelamineLow mole ratio UF co-blend

Rationale for Phase 2 Standards

- Technology forcing
- Defines BACT

Proposed Phase 2 Standards

Product	Jan 1, 2011	Jan 1, 2012	Jul 1, 2012
HWPW-VC	0.05 ppm		
HWPW-CC			0.05 ppm
PB	0.09 ppm		
MDF	0.11 ppm		
Thin MDF		0.13 ppm	

BACT for Phase 2 in 2011-12

HWPW

- UF + 15% Melamine
- PVA
- PVA-Soy Blend
- PB
 - Low mole ratio UF + 8% Melamine
 - Low mole ratio UF + Scavengers
 - PF

• MDF

- Low mole ratio UF + 12% Melamine
- Low mole ratio UF + Scavengers
- Polymeric MDI

Sell-through

- Allows sale of non-compliant products manufactured before standard effective
- Time period limited
- Differing sell-through periods

Exemptions

- Products not for sale in California
- Products subject to HUD standards
- Windows containing <5% composite wood
- Military specification plywood
- Vehicles

Enforcement Provisions

- Third Party Certification
- Statements of Compliance
- Recordkeeping
- Product Labeling
- Facility Inspections
- Compliance Testing

Importance of Enforcement



 Necessary to achieve ATCM benefits

•Fair competition between imports and domestic products

•Essential to viability of industry

Benefits and Impacts

Emissions, Exposure, and Risk Reductions

Emission reductions

- 180 tons per year Phase 1
- 500 tons per year Phase 2

Exposure reductions*

- 15% Phase 1
- 40% Phase 2

Lifetime cancer risk reductions*

- Baseline 86-231 cases
- 12-35 cases reduced Phase 1
- 35-97 cases reduced Phase 2

* Based on total daily average formaldehyde exposure

Increase in Panel Production Costs

Product	Phase 1	Phase 2
HWPW	< \$0.20	\$4 to 6
PB	< \$1	\$3 to \$4
MDF	< \$1	\$4 to \$6

Costs to Consumers

- Panel Price Increase in Phase 2

 \$3 to \$7 per 4' x 8' panel
- Median Priced Home ~2000 ft² (\$574,000)
 - Cabinets, countertops, shelving, and moldings
 - Incremental cost increase ~ \$400
- Bookcase
 - Pre-cut PB in ready-to-assemble kits (\$27)
 - About \$1 more in Phase 1; \$8 in Phase 2

Annual Industry-wide Costs

Product	Phase 1	Phase 2
HWPW	\$6 million	\$17 million
PB	\$5 million	\$61 million
MDF	\$9 million	\$49 million
Total All	~\$19 million	\$127 million

Projected Profitability Impacts

- 25 mills nationwide
- Costs per mill
 - HWPW \$0 to \$7 million
 - PB \$120,000 to \$18 million
 - MDF \$0 to \$16 million
- Average change in return on equity = 11.6%

Comments

Comments

- Standards too stringent
- Standards not stringent enough
- Accelerate Phase 2 standards implementation
- Phase 2 incremental production cost underestimated
- Total industry-wide cost underestimated

Comments (Cont'd)

- Exterior and garage door exemptions
- Clarify "architectural plywood" definition
- Performance-based compliance testing flexibility
- Several clarifying suggestions

Proposed Modifications

Proposed Modifications

- Move HWPW-VC implementation up one year
- Exemption for garage and exterior doors
- Performance-based compliance option for low-emitting formaldehyde based resins

Proposed Modifications (Cont'd)

- Sell-through provision dates
- Definition of "architectural plywood"
- Other clarifications

Recommendation

Recommendation

 Adopt the proposed ATCM with modifications suggested by staff